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Summary of NMR Imaging Principles

• Immerse H2O-containing sample in large static magnetic field to
magnetize sample (magnetization will be parallel to large ~B0)

• Excite magnetization to be transverse to ~B0 by applying a small
resonant magnetic field perpendicular to ~B0 [≈3 ms]

• Turn off transmitter; receive signal re-transmitted by precessing
transverse magnetization [≈20 ms]

• Manipulate transverse magnetization frequency by making ~B vary in
space and time during signal readout time

♦ Spatial variation of ~B =⇒ frequency encoding: frequency of signal
depends on where it is transmitted from

♦ Can also make signal sensitive to various microscopic features of
sample (i.e., below the imaging resolution)

• Reconstruct signal into images using Fourier transform

♦ Since frequency of signal components corresponds to spatial location



Magnetization of Protons

⇐ B0 small

Alignment Fraction
= 3 × 10−6 per
Tesla

⇐ B0 large

~M ∝ ~B =⇒
SNR ∝ B0
=⇒

“More’s Law”:
More B0 is better



Precession of Magnetization Density

• Fundamental law:
∂ ~M(~x, t)

∂t
= −γ~B(~x, t) × ~M(~x, t)

♦ γ = 42 MHz/Tesla =⇒ B0 = 1.5 T has f = 63 MHz

• Equilibrium ~M is parallel to large applied ~B = B0ẑ

• To excite away from this state, apply ~B1(t) field transverse to ẑ and
oscillating at γB0 frequency:

Typical B1 ≈ 10−5 T =⇒
time to excite to 90◦ about 1 ms



After Excitation: Signal Reception

• Wrap wire coil around object; Faraday’s law of induction =⇒

V (t) ∝ γB0

∫∫∫
H(~x)M⊥(~x, t) d3x

♦ V (t) = voltage induced in wire coil = signal

♦ M⊥(~x, t) = Mx(~x, t) + iMy(~x, t)
= complex representation of magnetization transverse to B0ẑ

♦ When ~B1 = 0,
∂M⊥

∂t
= −iγBz(~x, t)M⊥(~x, t)

♦ H(~x) = reception pattern of coil (Green’s function)

↪→ [design goal: H(~x) ≈ constant]

• Goal of imaging: reconstruct I(~x) ≈ M⊥(~x, t = TE)

♦ TE = echo time (usually 5–50 ms after excitation)

♦ M⊥ decay time constant ≈ 10–100 ms

• Tricky part of imaging: wavelength of radiation is huge relative to
object: 63 MHz =⇒ λ = 4.7m



Macroscopic Imaging Principles

• After excitation, apply gradient fields:

Bz(x, y, z, t) = B0 + Gx(t) · x + Gy(t) · y + Gz(t) · z

♦ G{x,y,z} fields are generated by running electric current into coils

of wire around object (G ≈ 10 mT/m; G · size � B0)

♦ {x, y, z} Gradient coil is designed to produce Bz(~x) linearly
proportional to {x, y, z} spatial coordinate

↪→ Combines with static B0 to change precession frequency of M⊥
• Precession frequency depends on position:

M⊥(x, y, z, t) = M⊥(x, y, z, 0)e−iω0t

× e−ikx(t)x−iky(t)y−ikz(t)z

♦ k{x,y,z} = γ

∫ t

0
G{x,y,z}(t′) dt′

♦ Velocity through k-space is proportional to gradient field, which is
proportional to voltage applied to gradient coil



• Result: signal V (t) ∝ F [H(~x)M⊥(~x, TE)] ≡ M̂⊥(~k) evaluated

at ~k = (kx(t), ky(t), kz(t))

• By manipulating gradient fields:

♦ Can drive through a patch of k-space

♦ Collect data V (t) = Î
(
~k(t)

)
♦ Arrange V (t) into ~k(t) grid

♦ Inverse FFT gives image I(~x)

• Resolution depends on imaging time

♦ 1 mm resolution in human subjects is typical (minutes)

♦ 10 µm resolution in small samples (plants, tissue) is possible

↪→ With special gradient equipment and hours or days of imaging

♦ Signal-to-Noise Ratio (SNR) is low =⇒ acquire data many times

♦ Don’t have to acquire all of k-space in each excitation

↪→ Multishot imaging: acquire one line of k-space data per shot



Sample Images: Top=5 minutes; Bottom=40 minutes



More Details: Slice Specific Excitation

• By applying a gradient field during ~B1 excitation, can excite M⊥ in a
thin slice only:



More Details: Sample Imaging Pulse Sequence



Effects of Moving H2O

• When the protons being imaged move during the data readout, the
image might be affected

• Modified equation for evolution of transverse magnetization:

∂M⊥(~x, t)

∂t
= −iγ~G(t)·~x M⊥−~v·∇~xM⊥+∇~x ·(D · ∇~xM⊥)

♦ ~v = advection velocity of H2O (e.g., blood flow)

♦ D = diffusion tensor of H2O in sample medium

V (t) ∝ M̂⊥(~k(t), t = 0)

× exp

{
−i

∫ t

0
~v · [~k(t) − ~k(t′)] dt′

}

× exp

{
−

∫ t

0
[~k(t) − ~k(t′)] · D · [~k(t) − ~k(t′)] dt′

}
♦ =⇒ Velocity changes phase of signal; Diffusion attenuates signal



• Orders of magnitude:

♦ Velocity phase change ≈ |~v| · |~k|max · TE

♦ Diffusion attenuation exponent ≈ |D| · |~k|2max · TE

♦ |~k|max = π/∆x [∆x = image resolution]

♦ TE = time in data readout where ~k(t) is closest to 0

↪→ This is the point where the signal is largest

• Applications in human imaging (∆x ≈ 1 mm, TE ≈ 10 ms):

♦ Blood flow: 100 mm/s in large arteries; 1 mm/s in capillaries:

↪→ Larger vessels produce measurable phase changes:

↪→ About 1.8◦ phase change per mm/s velocity

↪→ Blood vessel mixed in with non-moving tissue means can only
detect vessels ≥ 0.5 mm diameter

♦ Movement of heart wall; movement of walls of large arteries

• Diffusion effects are small for normal imaging methods:
D ≈ 10−3mm2/s =⇒ |D| · π2/∆x2 · TE ≈ 10−4

♦ N.B.: RMS diffusion distance
√

6DTE ≈ 10 µm



Diffusion Encoding

• To make diffusion effect measurable, must do something special

♦ Effect is proportional to |~k|2

• Must get to much larger values of ~k than are needed just for imaging

• Then come back to neighborhood of ~k = 0 and do image data
acquisition:

• In practice, to get strong diffusion effect, must go almost 100 times
farther out in |~k| than is needed for 1 mm spatial resolution



• Idealized gradient sequence used for Diffusion Weighted Imaging:

• Random walk through B-field gradient causes 1H spins to experience
different frequencies, and so get out of phase, and so the total signal
from all spins is attenuated (destructive interference):



Left: Standard Image Right: Diffusion Weighted Image

Patient after stroke



Diffusion Tensor Imaging

• For 1 mm resolution imaging, can ignore diffusion effects of standard
readout gradients

• Assume diffusion encoding is along a straight line in k-space:

♦ ~k(t) =

{
kmax(t/τ ) k̂ 0 < t < τ

kmax(2 − t/τ ) k̂ τ < t < 2τ

↪→ k̂ is unit vector along encoding direction

↪→ kmax is maximum value of |~k| reached at t = τ

♦ Image is attenuated by factor exp{−2
3τk2

max k̂ · D · k̂}
♦ Example: k̂ = x̂ =⇒ attenuation factor depends on Dxx

component of D tensor

♦ Example: k̂ = [x̂ + ŷ]/
√

2 =⇒ attenuation factor depends on
Dxx + 2Dxy + Dyy

• Result: by taking at least 7 measurements (more is better) can
calculate all 6 elements of D tensor



• Diffusion of water in brain white matter tracts is not isotropic: D‖ is
2–3 times larger than D⊥

Ratio of largest eigenvalue of D to smallest

• Applications: tracing white matter “wires” in brain; detection of
demyelinating diseases



More Complex Microscopic Motions

• Stochastic transport in complex medium (e.g., tissue, rocks) can be
complicated

• q-space formalism can be used to image statistics of such motion

• Technique: apply diffusion encoding gradients very rapidly, over
time δ, waiting time ∆ � δ before rewinding back to ~k = 0

Followed by normal imaging k-space readout



•~q ≡ ~kmax (the peak value during the ∆ time)

• Assumptions:

♦ The medium is homogeneous over the size of an imaging voxel

♦ The motion of the H2O molecules can be described by a
propagator function:

Prob(~x = ~r, t = ∆|~x = ~r′, t = 0) ≡ P (~r −~r′, ∆)

♦ δ � ∆, so there is little transport while |~k| < |~q|
• Then image is attenuated by factor

E(~q, ∆) =

∫∫∫
P (~r, ∆)e−i~q·~r d3r

more than it would be if no diffusion/q-space encoding had been
applied

♦ Large ~r limit = small ~q limit = diffusion

• By acquiring images with enough different values of ~q, can reconstruct
propagator P (~r, ∆)



• Application: understanding water diffusion in neural tissue

Mean Displacement images in rat spinal cord

Left=Normal mouse brain Middle=Ischemic Right=Post-mortem



• Technical difficulties make q-space imaging a rarity:

♦ Very time consuming

↪→ Signal is weak at large |~q| =⇒ must acquire lots of data for
averaging purposes

♦ Need for rapid switching of large gradient fields (small δ) makes
reaching large ~q nearly impossible in humans

↪→ Large dB/dt induces currents in tissue, can cause nerve
stimulation

♦ Most work has been done on rodents (and plants!)

♦ In humans, some work has been done with just a few large ~q points

↪→ Goal is to see if white matter diseases can be tracked this way

↪→ It is clear that P (~r, ∆) is not Gaussian in normal white matter

↪→ White matter is very complex at the 1–10 micron scale:

. Directionality of axon bundles

. Intra- and extra-cellular H2O diffuse differently

. Diffusion within myelin sheath is very slow

. WM voxel ≈ 1 mm contains lots of ≈ 10µm “stuff”



• Extend q-space formalism to include H2O transport during
application of gradient fields

♦ Time dependent propagator: δ(~x)
t−→ P (~x, t)

Diffusion: PD(~x, t) = e−~xT D−1~x/(4t)/[(4πt)3 det D]1/2

♦ No gradients during transport of magnetization density M⊥ =⇒
M⊥(~x, 0)

t−→ M⊥(~x, t) = M⊥(~x, 0) ∗ P (~x, t)

M̂⊥(~q, 0)
t−→ M̂⊥(~q, t) = M̂⊥(~q, 0)P̂ (~q, t)

∂M̂⊥(~q, t)

∂t
=

1

P̂ (~q, t)

∂P̂ (~q, t)

∂t
M̂⊥(~q, t)

♦ Define u(~q, t) = − log P̂ (~q, t)

P̂ (~q, t)−1∂P̂ (~q, t)

∂t
= −

∂u(~q, t)

∂t
≡ −ut(~q, t)

♦ No gradients =⇒
∂M⊥(~x, t)

∂t
= F−1

{
−ut(~q, t)M̂⊥(~q, t)

}



♦ With magnetic field gradients δBz(~x, t) = ~xT ~G(t),
define q-space path by d~q(t)/dt = γ~G(t):

∂M⊥(~x, t)

∂t
= −iγδBz(~x, t)M⊥(~x, t)

+F−1
{

−ut(~q, t)M̂⊥(~q, t)
}

= −i
d~q(t)T

dt
~xM⊥(~x, t)

+F−1
{

−ut(~q, t)M̂⊥(~q, t)
}

Generalizes Bloch-Torrey equation for magnetization evolution in
the presence of diffusion and field gradients

♦ In Fourier coordinates ~x → ~q:

∂M̂⊥(~q, t)

∂t
−

d~q(t)T

dt
∇~qM̂⊥(~q, t) = −ut(~q, t)M̂⊥(~q, t)



♦ A first order PDE in (~q, t) space

=⇒ Solve via characteristics, then translate back to imaging
~k-space (which is small compared to ~q-space excursions):

M̂⊥(~k, T ) = exp
[
−

∫ T

0
ut(~q(t), t) dt

]
M̂⊥(~k, 0)

attenuation = E = exp
[
−

∫ T

0
ut(~q(t), t) dt

]
− log(E) =

∫ T

0
ut(~q(t), t) dt

= −
∫ T

0

1

P̂ (~q(t), t)

∂P̂ (~q(t), t)

∂t
dt

♦ General trajectory through (q, t)-space gives a tomographic result
about time evolution of Fourier transform of point spread function

♦ Unifies and generalizes the distinct theories of diffusion weighted
imaging and q-space imaging



♦ Check with standard q-space result:

↪→ Arbitrary P (~x, T ), but with ~q(t) = const

. Since gradients applied only during brief intervals δ � ∆ ≡ T

↪→ log(E) = −
∫ T

0
ut(~q, t) dt = −u(~q, T ) = log P̂ (~q, T )

=⇒ E = P̂ (~q, T )

as usual

♦ Check with standard diffusion tensor result:

↪→ Arbitrary ~q(t), but P̂ (~q, t) = e−t·~qT D~q

=⇒ ut(~q, t) = ~qT D~q = const

=⇒ log(E) = −
∫ T

0
~q(t)T D~q(t) dt

as usual



• Possible paths through q-space, with finite maximum gradient
strength:

♦ Problem: sampling coverage. Given a maximum gradient strength,
simply can’t get to large |~q| with small t

♦ Problem: amount of data. Have to cover a lot of paths through
(~q, t)-space to get enough projections so can solve for ut(~q, t)
and then reconstruct P̂ (~q, t)



♦ Only feasible solution I see is to build some reasonable
parameterized model for P̂ (~q, t) and then solve for the parameters

↪→ Example: ‘higher order’ diffusion (∂n/∂xn for n > 2) —
Liu et al., MRM 2004

. Same as assuming ut(~q, t) = U(~q), and expanding U(~q) in
a power series in ~q

. So P̂ (~q, t) = e−t·U(~q), and coefficients of U(~q) expansion
are proportional to cumulants of P (~x, t)

↪→ Example: ‘hindered + restricted diffusion compartments’ —
Assaf et al., MRM 2004

. ‘hindered’ diffusion is extra-axonal — fairly free, but has to get
around obstacles — described by anisotropic diffusion tensor D

. ‘restricted’ diffusion is intra-axonal — myelin boundaries form
impermeable cylinders — described as R2D⊥t → ∞ by

u(~q, t) = q2
‖D‖t + aR4q2

⊥/(D⊥t)[2 − bR2/(D⊥t)]

(‖ & ⊥ are along & transverse to axon; R = axon radius)
⊥ diffusion asymptotes to const attenuation as t → ∞,
modeling no H2O transport across myelin sheath



Wrapup

• Tomographic result

− log (I[~q(t)]/I[0]) =

∫ T

0

∂

∂t
u(~q(t), t) dt

is a way to unify the mathematical formalization of disparate models
that try to blend q-space and DWI techniques

• Hopefully will allow exploration and generalization of physiologically
‘reasonable’ models for H2O transport

♦ Which in turn can give a little insight into the microscopic contents
of voxels
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